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Abstract Many regions around the world require improved
gravimetric data bases to support very accurate geoid mod-
eling for the modernization of height systems using GPS.
We present a simple yet effective method to assess grav-
ity data requirements, particularly the necessary resolution,
for a desired precision in geoid computation. The approach
is based on simulating high-resolution gravimetry using a
topography-correlated model that is adjusted to be consis-
tent with an existing network of gravity data. Analysis of
these adjusted, simulated data through Stokes’s integral indi-
cates where existing gravity data must be supplemented by
new surveys in order to achieve an acceptable level of omis-
sion error in the geoid undulation. The simulated model can
equally be used to analyze commission error, as well as model
error and data inconsistencies to a limited extent. The pro-
posed method is applied to South Korea and shows clearly
where existing gravity data are too scarce for precise geoid
computation.

Keywords Geoid undulation · Data requirements ·
Gravity–topography correlation

1 Introduction

Height-system modernization using GPS is based on the
well-known and simple operative equation that links GPS-
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derived heights, h, above a given ellipsoid and orthometric
heights, H , of a national datum (the same formula holds for
normal heights and quasi-geoid undulations or height anom-
alies):

H = h − N , (1)

where N is the (local) geoid undulation with respect to the
ellipsoid. It is determined from gravimetric data obtained
on or near the Earth’s surface. Height-system moderniza-
tion thus depends in the first place on a determination of
the required accuracy and resolution of these gravity data.
Biases between a global geoid and the local vertical datum
and between different ellipsoids can be significant, but are
not considered in the present analysis. Our aim is to assess
the surface gravity data requirements in order to compute the
geoid undulation to a certain desired accuracy.

Apart from errors in the model that relates gravimetric
data to the geoid undulation, there are two basic errors that
contribute to the total error in the geoid undulation: commis-
sion error and omission error. We assume that model errors
can be reduced to negligible levels with appropriate theory
(see, e.g., Vanicek and Martinec 1994; Sansò and Rummel
1997). However, the commission and omission errors depend
largely on the data (and can be affected by methods of data
analysis and estimation technique). The commission error
results from observational errors that propagate to the com-
puted (or, estimated) geoid undulation; and, the omission
error ensues from the discreteness of, or a lack of resolution
in the gravimetric data. Both errors can be reduced only with
improvements in the data, namely, by reducing observational
error and by reducing the data spacing. It is known (and also
verified below) that the commission error has much less influ-
ence (provided it is strictly random and uncorrelated) than
the omission error. The reason is that today’s instruments are
quite accurate and the data are integrated (summed) to yield
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the geoid undulation; and, summing random errors tends to
cancel them. Therefore, we concentrate on the omission error
and provide a simple yet effective means to determine the
required resolution of gravimetric data in a region, which
would support geoid computation to a desired accuracy.

One could approach this problem in a global, or even a
regional statistical setting using spectral analyses (e.g.,
Sjöberg 1979; Schwarz and Li 1996). Indeed, such analyses
are quite informative, but, depending on the region of support
for the spectrum determinations, they may not be able to dis-
tinguish between local areas of relatively rough and smooth
gravity signatures. Also, one could assess data requirements
on strictly statistical grounds in the space domain, establish-
ing a statistical interpretation of omission errors (of course,
this is the standard approach for random commission errors),
as done by Kearsley (1986); and, least-squares collocation is
another common method for this purpose. However, again,
the effect of omission errors depends specifically on the spa-
tial roughness of the field, which may not necessarily be
captured accurately by a statistical distribution. For these
reasons, it becomes more desirable to perform the analysis
using a deterministic approach in the space domain. How-
ever, this requires a sufficiently detailed gravity database for
the region in question, precisely which may be lacking and
whose development depends on the results of the analysis.
We show how to simulate such a database from existing data
and present an example to establish data requirements for
geoid computation.

A high-resolution model of the regional gravity anomaly
field may be constructed in the first place from topographic
elevation data because of their well-known linear relation-
ship. Such modeling is designed usually for simulation pur-
poses or computational analyses (as in our case) and not
for actual field modeling, although the latter certainly has
also been employed, particularly for high-degree spherical
harmonic models that require uniformly distributed gravity
data over the world. It is also known that the linear correla-
tion between gravity anomalies and topography is not perfect
and, indeed, it is limited to the short wavelengths. Even here,
we may find striking examples where the correlation fails, as
in the mid-continent rift region of North America (strongly
varying anomalies in essentially flat terrain). Nevertheless,
it is a common and largely appropriate method to develop a
high-resolution gravity model for the purpose of analyzing
its computational properties.

If there exists, in addition, a skeletal network of gravity
anomaly data from actual measurements in a region, the ques-
tion naturally arises how to create a high-resolution regional
model using the topographic data in a consistent way. Topo-
graphic elevation data usually have much higher resolution
and are more easily obtained [e.g., the Shuttle Radar Topog-
raphy Mission (SRTM) or airborne lidar] than surface or air-
borne gravity measurements. Combining the gravimetric and

topographic data with mutual consistency requires that the
individual characteristics of each type are preserved in some
way. That is, we wish to ensure that not only the long-wave-
length information of the gravity network is maintained, but
since each gravity value in the network contains all frequen-
cies, the high-frequency topography-implied gravity anom-
alies should also fit into the coarse network.

We note that our approach, described below, differs from
the recent synthetic gravity field modeling (Baran et al. 2006)
that is based on combining long-wavelength spherical har-
monic models with short-wavelength topography-implied
gravity fields. The long-wavelength information in our case
comes primarily from existing gravity data in a region and
the topography-implied gravity values are used to fill in the
resolution lacking in these data. In this way, the modeling
attempts to remain as true as possible to the particular region
under study over all frequencies in the field, presenting only a
synthesis of the high-resolution field where it is not yet avail-
able from actual gravity measurements. A spherical harmonic
model limits the spectrum to a certain wavelength and all
shorter wavelengths come from just one source, topographic
data.

2 Topography-implied anomalies

The first step in combining the gravity anomaly implied by
the topographic height, H , and the measured free-air gravity
anomaly,�g, is to develop their theoretical relationship. One
form of their putative linear correlation comes from the Bou-
guer anomaly at a point, P , on or above the Earth’s surface,
defined by

�gB(P) = �g(P)− 2πGρH(P)+ c(P), (2)

where G is Newton’s gravitational constant, ρ is an average
density of the topographic mass (the crust), and c is the terrain
correction (accounting for the difference between a Bouguer
plate assumption and the actual topography in the vicinity
of the point). The linear correlation is immediately obvious
if we neglect c and consider that the Bouguer anomaly over
a particular region tends to be a long-wavelength signal, or
approximately constant, B ≈ �gB :

�g(P) ≈ B + 2πGρH(P). (3)

A second approach for establishing this correlation comes
from the theory of isostasy, which attempts to explain the
existence of topography on a planet that over time tends
toward hydrostatic equilibrium. The isostatic gravity anom-
aly is given by

�gI (P) = �g(P)− C(P)+ A(P), (4)

where C(P) is the gravitational effect of all masses above the
geoid and A(P) is the effect of their isostatic compensation.
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Fig. 1 Isostatic compensation of topography according to the Airy
model

Airy’s isostasy model supposes that the topography is float-
ing in the mantle in equilibrium according to the buoyancy
principle (Fig. 1):

ρH = (ρm − ρ)H ′ = �ρH ′, (5)

where H ′ is the (positive) depth of the “root” with respect
to the depth of compensation, D (typically, D = 30 km),
and the crust density, ρ, and mantle density, ρm , are assumed
constant. Similarly, in ocean areas, the lower density of water
relative to the crust allows the mantle to intrude into the crust,
where equilibrium is established if (ρ − ρw)B = �ρB ′, and
B is the (positive) bathymetric distance to the ocean floor,
B ′ is the height of the “anti-root” of mantle material, and ρw
is the density of seawater (see Heiskanen and Moritz 1967,
p. 136).

Removing the mass that generates C(P)makes the space
above the geoid homogeneous (empty). According to Airy’s
model, the attraction, A(P), is due, in effect, to adding that
mass to the root so as to make the mantle homogeneous. If
the isostatic compensation is perfect according to this model,
then the isostatic anomaly would vanish because of this cre-
ated homogeneity; and, indeed, isostatic anomalies tend to be
small. Therefore, we can model the free-air gravity anomaly,
using Eq. (4) with�gI (P) ≈ 0, as generated by the attraction
due to the topographic masses above the geoid, with density,
ρ, and by the attraction due to the (lack of) mass below the
depth of compensation, with density, −�ρ. We redefine the
latter as due to a negative density and write:

�g(P) ≈ C(P)+ Ā(P). (6)

Expressions for the terms on the right side can be found
using various approximations. One approach (Forsberg
1985) is simply to approximate the topography according to
its Helmert condensation onto the geoid, whereby its gravi-
tational effect is simulated by a two-dimensional mass layer
with density given at a point on the geoid by

κH = ρH. (7)

Similarly, the gravitational effect of the ocean bottom
topography can be modeled by forming a layer on the
geoid that represents the ocean’s deficiency in density rel-
ative to the crust. The density of this layer is negative:
κB = −(ρ − ρw)B = −ρ(1 − ρw/ρ)B. The potential, V ,
at a point, P , due to a layer condensed from topography (or
bathymetry) is given by

V (P) = GρR2
∫ ∫

σQ

H̄(Q)

s
dσQ,

H̄(Q) =
{

H (Q) , Q ∈ land

−
(

1 − ρw
ρ

)
B (Q) , Q ∈ ocean

(8)

where s is the distance between P and the integration point.
The potential and its derivatives (e.g., C(P) = −∂V /∂rP ,
where rP is the radial coordinate of P) are continuous, as
long as P is located above the geoid.

Similarly, the potential (and its derivatives) of the mass
added below the depth of compensation can be approxi-
mated by that of another layer at level D with density,
κH

′ = −�ρH ′, representing a condensation of material that
is deficient in density with respect to the mantle and extends
a depth, H ′, below D (see Fig. 1). For ocean areas, the anti-
root is condensed onto the depth of compensation with den-
sity, κB

′ = �ρB ′. Improved approximations of C(P) and
Ā(P) certainly may be contemplated (e.g., Makhloof and Ilk
2008; Heck and Seitz 2007; Tsoulis and Stary 2005), as may
be the removal of the constant density assumption. However,
ignoring these refinements is justified as they are well within
the error bounds created by the linear correlation assump-
tion between gravity and topography that is common to all
of these modeling methods. Therefore, we adopt the simple
Helmert layer model.

Equation (8) for a fixed height of the point, P , is a con-
volution of H and the inverse distance. Further making the
planar approximation (for local applications, as in the present
case), this distance becomes

s =
√
(x − x ′)2 + (y − y′)2 + z2, (9)

with (x ′, y′) being the local coordinates of points on the
geoid. Applying the convolution theorem, the Fourier trans-
form of the potential, Eq. (8), at the level of z > 0 is given
by

F(V ) = Gρ

ω
F(H̄)e−2πωz, (10)

where ω = √
µ2 + ν2 and µ, ν are spatial frequencies cor-

responding to the plane approximating the geoid.
Including the layer at the compensation depth, D, below

the geoid with density, κH
′ = −ρH (in view of Eq. (5); and

similarly, κB
′ = ρ(1 − ρw/ρ)B, for ocean areas), the Fou-

rier transform of the total potential due to both the topography

123



C. Jekeli et al.

and its isostatic compensation, is approximately

F(V ) = Gρ

ω
F(H̄)(e−2πωz − e−2πω(D+z)). (11)

Consequently, multiplying by 2πω yields the Fourier
transform of the gravitational attraction due to these mass
layers. Finally, the gravity anomaly (at level z > 0) is given
by

�g = 2πGρF−1(F(H̄)(1 − e−2πωD)e−2πωz). (12)

We see the same type of linear relationship between the
heights and the gravity anomaly as considered in Eq. (3). For
the typical compensation depth, D = 30 km, the isostatic
compensation factor is

e−2πωD ≤ 0.002, for ω ≥ 3.3 × 10−5 cy/m, (13)

and could be neglected if the gravity is modeled from topog-
raphy only at resolutions (half-wavelengths) more detailed
than D/2 = 15 km. However, for larger regions, the isostatic
effect should be included. For a practical implementation of
formula (12) we use the discrete Fourier transform (DFT), as
defined, e.g., in (Brigham 1988, p.97):

�gj,k = 2πGρ(DFT−1((DFT(H̄))	,m

× (1 − e−2πω	,m D)e−2πω	,m z)) j,k, (14)

where the data are on a regular J × K grid with intervals,
�x and �y; and

ω j,k =
√
(µ j )2 + (νk)2, (15)

µ j =

⎧⎪⎨
⎪⎩

j

J�x
; j = 0, . . . ,

J

2
− 1

j − J

J�x
; j = J

2 , . . . , J − 1

νk =

⎧⎪⎨
⎪⎩

k

K�y
; k = 0, . . . ,

K

2
− 1

k − K

K�y
; k = K

2 , . . . , K − 1
(16)

and where also 	 = 0, . . . , J − 1,m = 0, . . . , K − 1.

3 Two-dimensional end-matching

In order to fit the topography-derived (fine-resolution) grav-
ity anomalies to the given (coarse-resolution) network of
measured free-air anomalies, we employ a technique that
in one dimension amounts to an end-matching algorithm. To
fit a one-dimensional profile of fine-resolution anomalies to
given values at either end of the profile, we solve for and
apply the corresponding bias and trend to the fine-resolution
data. In order to extend this idea to two dimensions, we first
triangulate the given network of coarse-resolution (CR) data.
For example, the Delaunay triangulation is an optimal algo-
rithm that maximizes the minimum angle of each resulting

Fig. 2 The fine-resolution data (solid dots) on a regular grid and within
a triangle defined by coarse-resolution data (circles) are adjusted so that
the best-fitting plane through them contains the triangle vertices

triangle. Then, we adjust the fine-resolution (FR) data within
each triangle such that their best-fitting plane passes through
the vertices (measured anomalies) of the triangle (Fig. 2).
This is accomplished with the following algorithm.

The equation of a plane is

z = δ + αx + βy, (17)

where z represents the gravity anomaly data, and (x, y) its
planar coordinates. If there are n > 3 FR-data points within
a triangle, then a least-squares fit of the plane to the anom-
alies, ζ = ( z1 . . . zn )

T, yields estimates of the parameters,
ξ = ( δ α β )T:

ξ̂ = (AT A)−1 ATζ, (18)

where

A =
⎛
⎜⎝

1 x1 y1
...
...

...

1 xn yn

⎞
⎟⎠ . (19)

We remove this plane from the FR-data and add the plane
implied by the vertices of the CR-triangle, given by

ξCR = A−1
CRζCR, (20)

where ACR is the analogue of A (Eq. (19)), but for the verti-
ces of the triangle, and ζCR contains the CR-data at the three
vertices. Thus,

z̄k = zk + (δCR − δ̂)+ (αCR − α̂)xk + (βCR − β̂)yk,

k = 1, . . . , n. (21)

If n = 0, no computation is performed. In case n is 1, 2,
or 3, or if the FR-data are co-linear within a triangle, then
simply set

z̄k = δCR + αCRxk + βCR yk, k = 1, . . . , n. (22)
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In this way, we create a fine-resolution gravity anomaly
model from topographic data that is, at the same time, con-
sistent to some degree with the measured gravity anomalies.
Measurement errors are not considered, neither in the grav-
ity anomalies nor in the topographic elevations. Although
there is an opportunity to incorporate a least-squares weight-
ing based on such random errors, it would not substantially
improve the model in most cases (systematic errors or blun-
ders would be much more difficult to identify and remove in
this procedure). We also note that least-squares collocation
with parameters (the CR-points) could be used to update the
FR-data. However, this is basically equivalent to our proce-
dure and was not considered further.

4 Geoid computation

With such a high-resolution gravity anomaly model for a
region (that is consistent approximately with existing gravi-
metric data), one is in a position to determine the required
resolution (and accuracy) in gravity data for an accurate geoid
determination. For this purpose, we assume that, to first order,
the determined resolution is independent of the details asso-
ciated with the gravity reduction to the geoid when using
Stokes’s formula (or the Molodensky correction factors when
solving the simple Molodensky problem for the telluroid).
Similarly, the removal of a longer-wavelength global model
(such as EGM96, with resolution of about 30 arcmin) should
not influence significantly the required resolution in grav-
ity data, since the needed resolution for a particular geoid
accuracy will likely be higher than that of the global model.
We may thus consider Stokes’s integral of free-air gravity
anomalies to represent the geoid undulation exactly for the
purpose of the omission (and commission) error analysis.
Furthermore, using the same arguments, we may use a pla-
nar version of the integral, limited to a local region, E , and
supplemented with a global model.

Therefore, with the usual remove/restore procedure, the
well-known Stokes’s formula for the geoid undulation,

N = R

4πγ

∫ ∫

σ

(�g −�gM )S(ψ)dσ + NM , (23)

becomes

N (x, y) = 1

2πγ

∫ ∫

E

�g(x ′, y′)−�gM (x ′, y′)√
(x − x ′)2 + (y − y′)2

dx ′dy′

+ NM (x, y), (24)

where γ is an average value of normal gravity, and �gM

and NM are the gravity anomaly and geoid undulation deter-
mined from a given global spherical harmonic model. With
the FR-data on a J × K regular grid with data intervals, �x
and �y, respectively, one may use the DFT approximation
of Stokes’s integral (the first term in Eq. (24)):

δN	,m =
√
�x�y

π

δ�g	,m
γ

+ �x�y

2πγ

×DFT−1(DFT(δ�g) j,kDFT(ũ) j,k)	,m (25)

where δ�g = �g − �gM , and the discrete kernel corre-
sponding to the planar approximation of Stokes’s function
is

u	,m =
{

1√
	2�x2+m2�y2

, 	 �= 0 or m �= 0

0, 	 = 0 and m = 0
(26)

and its periodicity is enforced (to comply with the DFT def-
inition) so that

u	+pJ,m+q K = u	,m, for any integers p, q (27)

In these formulas, j, 	 = 0, . . . , J − 1 and k,m =
0, . . . , K −1. Note that the singularity in the kernel is accom-
modated by the first term in Eq. (25) since Stokes’s integral
is of the weakly singular type. Also, for the practical imple-
mentation of these formulas we doubled the extent of the data
in both directions with zero padding (Jekeli 1998) to avoid
the cyclic convolution error associated with the use of the
DFT.

5 An example

The procedure to model the fine-resolution gravity anom-
aly field from topography and a coarse network of gravity
data was applied to data in South Korea. The motivation
was to evaluate gravimetric requirements for precise geoid
determination in this country. Figure 3 shows the topography
(and bathymetry) of the region based on ETOPO2 2 arcmin
data. For the simulated gravity anomalies we used 30 arc-
sec elevation data (but not bathymetry, since it was unavail-
able at this high resolution), derived from 3 arcsec SRTM
data (averages over 30 arcsec×30 arcsec blocks). The cor-
responding topography-derived gravity anomalies (denoted
as FR-data, �gFR), according to Eq. (12), are also shown
in Fig. 3. For these simulated gravity anomalies, we disre-
garded the bathymetry by assuming elevations equal to zero
(H̄ = 0) in ocean areas.

Figure 4 depicts over 14,000 stations with gravity data
(CR-data, �gCR) in South Korea. Clearly, the resolution in
the north-eastern quadrant is not uniform, with data mostly
following existing roads, and the deviation from uniformity
is represented by data gaps of the order of 35 km (18 arcmin).
In the south-western quadrant, the distribution of data is more
uniform and their resolution is roughly 3 km (1.6 arcmin).

An FR-anomaly was interpolated from the FR-grid to each
CR-point using inverse distance weighting, and the differ-
ences between these two anomalies are shown in Fig. 5. It
is clear that the purported linear relationship between grav-
ity anomaly and topography holds reasonably well, since the
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Fig. 3 Left Topography and
bathymetry for Korea mapped
from ETOPO2 (2 arcmin) data,
with two indicated sub-areas
representing relatively smooth
and rough terrain. Right SRTM
topography-implied gravity
anomaly for the land area of
South Korea
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Fig. 4 Locations of existing gravimetric values (CR data)

differences exhibit near-zero slope with respect to elevation.
Table 1 provides some statistics for all anomalies and corre-
sponding comparisons.

Applying the triangulation and plane-matching procedure
to these data we obtain a modified, or updated FR-anom-
aly model (�gFR). Figure 6 shows profiles of the original
FR-data, the CR-data, and the updated FR-model for a rep-
resentative latitude across South Korea, φ = 36◦, containing
both high-resolution and low-resolution CR-data. The differ-
ences between the updated FR-model interpolated onto the
CR-points and the CR-anomalies are shown in Fig. 7, and
their statistics are given in Table 1, thus also demonstrating

Fig. 5 Differences between topography-derived anomalies and gravi-
metric data

the improvement in the model relative to the existing gravi-
metric data. The standard deviation of the difference after
adjusting the FR-data to the CR-data decreased from 18.6 to
8.7 mGal. A plot of the updated FR-data (Fig. 8) shows, in
particular, how the simulated anomaly has been adjusted in
the eastern part of the country below the 37◦ parallel.

6 Data requirements for geoid determination

The data resolution required to achieve a certain level in
the omission error of the geoid undulation is determined by
computing the geoid undulations from the simulated grav-
ity data with different levels of decimation. The true geoid
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Table 1 Statistics for the
anomalies and various
comparisons

All values in (mGal)

Quantity Min Max Mean Std. dev.

�gCR −111.13 353.38 23.02 22.43

�gFR −26.80 164.15 0.00 16.32

�gFR −116.58 210.12 11.31 18.15

�gFR −�gCR −251.70 149.58 −20.21 18.63

�gFR −�gCR −186.39 129.64 −1.06 8.67

Fig. 6 Profiles of simulated and updated gravity anomalies along the
36◦ parallel

Fig. 7 Differences between topography-derived, updated anomalies
and gravimetric data

undulation is defined by the data with highest resolution,
namely the 30′′ × 30′′ �gFR data (SRTM topography-
implied gravity anomalies fit to existing gravimetric data).
These data over the South Korean peninsula were supple-
mented by extending the 30′′ × 30′′ grid to ocean areas and
North Korea (the total area in Fig. 8) with gravity anomalies

Fig. 8 SRTM topography-implied gravity anomaly for land area of
South Korea, updated by gravimetric data

computed from the global model EGM08 (Pavlis et al. 2008).
Since EGM08 has maximum resolution of 5′, this extension
serves only to mitigate the edge effects in the geoid compu-
tation due to the lack of high-resolution data in ocean areas
(and gravimetric data in North Korea). Figure 9 shows for
one profile in latitude that this extension of data is reason-
able across the peninsula as there are no obvious biases and
trends in the differences between the simulated and EGM08
anomalies. In general, over the entire region, a similar consis-
tency exists between the simulated land data and the EGM08
model; and, any discrepancies are not expected to influence
significantly the values of the determined geoid undulation.

The geoid undulation was computed according to Eqs. (24)
and (25) using EGM96 (Lemoine et al. 1998) up to degree
and order 180 as the global model, and �gFR on 30′′ ×
30′′, 1′ × 1′, 2′ × 2′, 5′ × 5′, 7.5′ × 7.5′, and 10′ × 10′ grids
in the area defined by 34◦ ≤ φ ≤ 38.5◦ in latitude and
125◦ ≤ λ ≤ 130◦ in longitude (very similar results resulted
with EGM96 used up to degree 360). Each set of lower reso-
lution gravity anomalies was derived from the highest reso-
lution by simple decimation. Within this area, we considered
two sub-areas representing comparatively smooth and rough
topography and corresponding smooth and rough gravity.
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Fig. 9 Profiles of the gravity anomaly at latitude, φ = 36.5◦, from
EGM08 and from the updated FR-data. The latter is zero by definition
over ocean areas

These areas are shown in Fig. 3, and are delimited in lati-
tude and longitude by 36◦ ≤ φ ≤ 38◦, 126.5◦ ≤ λ ≤ 128◦,
and 36.5◦ ≤ φ ≤ 38.5◦, 127.5◦ ≤ λ ≤ 129◦, respectively.
Within these areas the geoid undulation, Nest, for each res-
olution of data was compared to the true geoid undulation,
Ntrue, defined by the highest resolution data. Figure 10 shows
the root-mean-square (rms) of the differences.

If the commission and omission errors should contribute
equally, then a total rms error of 5 cm would require an omis-
sion rms error of 3.5 cm. Therefore, from Fig. 10, in the rel-
atively smooth area, the data resolution should be about 3.5′
(6.5 km); in the rougher area, a bit higher, around 3′ (5.6 km).
Clearly, in the southwestern part of South Korea, the gravity
data have adequate resolution, whereas, in the northeastern
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Fig. 10 Root-mean-square of the difference, Nestimate − Ntrue

part they do not (see Fig. 4). If the geoid accuracy should be
1 cm (rms), then the omission error (0.7 cm) may be satis-
fied with data resolution of about 1′ (which would require
improved gravimetric resolution in all parts of South Korea).
However, this assessment may be somewhat optimistic, since
our truth geoid undulation was defined with only twice this
resolution. Table 2 provides additional statistics of the geoid
differences, Nestimate − Ntrue.

These statistics provide only a summary appraisal of the
effect of data resolution on the computed geoid undulation.
A more detailed analysis is possible by inspecting individ-
ual errors in the spatial domain, as in Fig. 11, which shows
the absolute values of the errors when the data resolution
is 3 arcmin. The isolated peaks in the error are not neces-
sarily due to low data resolution, and additional analyses
(outside the present scope) could be undertaken to determine

Table 2 Statistics of differences, Nestimate − Ntrue, due to limited data resolution; units: (cm)

Elevation (m) Data resolution

1′ × 1′ 2′ × 2′ 3′ × 3′ 4′ × 4′ 5′ × 5′ 7.5′ × 7.5′ 10′ × 10′

Rough area

401 Mean −0.4 0.2 2.0 −3.6 7.6 5.1 3.0

289 Std. dev. 0.7 2.3 3.0 3.7 5.9 7.7 11.7

494 rms 0.7 2.3 3.7 5.2 9.6 9.2 12.1

1,548 Max 3.5 7.6 14.5 11.5 29.2 36.2 46.1

0 Min −6.0 −12.6 −16.2 −19.2 −10.1 −16.0 −20.9

Smooth area

162 Mean −0.5 0.5 0.7 −3.0 4.8 −1.5 2.6

154 Std. dev. 0.5 2.0 2.1 3.3 5.3 6.9 11.0

223 rms 0.6 2.0 2.2 4.4 7.2 7.1 11.3

1,352 Max 4.1 17.0 12.9 10.2 45.7 18.2 56.7

0 Min −3.7 −5.3 −16.2 −14.1 −12.9 −20.3 −20.9
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Fig. 11 Absolute differences, |Nestimate − Ntrue|, for the case of 3′ ×3′
data resolution

the reason for these peaks and how improved data would
reduce them. For example, the peak error near longitude,
λ = 127.25◦, and latitude, φ = 36.5◦, results from an
isolated string of suspiciously large CR-gravity anomalies
(100–240 mGal; see Fig. 12), whose effect on the fitting of
the FR-data is also evident in the large spike in Fig. 9. Such
possibly inconsistent existing data would be candidates for
further validation.

Finally, for the sake of completeness, it is easy to deter-
mine the commission error due to observation noise in the
gravity anomalies, as well as errors in the long wavelength
model that is used in the remove/restore process. With stan-
dard deviations of simulated (assumed ergodic) Gaussian
white noise in the anomalies ranging from 1 to 5 mGal, the
propagated random errors in the estimated geoid undulation
yield corresponding standard deviations that are almost neg-
ligible, as exemplified in Table 3. This verifies the known rel-
ative unimportance of measurement error compared to data
resolution, provided the former is white noise. Similar results
were obtained for other data resolutions. For example, with
4′ ×4′ resolution, the added random data noise increased the

Fig. 12 Triangulation of CR-data near the location of an isolated peak
in geoid undulation error. The white symbols indicate CR-data greater
than 100 mGal or less than −50 mGal

standard deviation in the undulation error from 2.8 cm (no
noise) to 2.9 cm (1 mgal noise) and to 3.4 cm (4 mgal noise).
Correlated errors, e.g., coming from the spherical harmonic
model, have a much more significant effect on the total com-
mission error. Table 3 also lists the error statistics for the
estimated undulation if the EGM08 model is used instead
of EGM96, both only up to degree 180. The difference in
these models for degrees up to 180 may be interpreted as a
pseudo-random error in the harmonic coefficients. As shown,
the commission error coming from this simulated uncertainty
in the global model is much more significant than the effect
of uncorrelated noise in the local gravity observations.

7 Conclusions

We have presented a simple yet thorough and comprehensive
method to assess gravimetric data requirements for precise
geoid computation in a local region such as South Korea.

Table 3 Statistics of differences, Nestimate − Ntrue, due to data noise, 2′ × 2′ resolution, and simulated errors in the global model, over the entire
study area; units: (cm)

Data noise 0 mGal 1 mGal 2 mGal 3 mGal 4 mGal 5 mGal Harm. coeff. error

Mean 0.31 0.51 0.22 0.65 0.01 1.21 −9.66

Std. dev. 1.33 1.28 1.43 1.71 1.69 1.73 8.60

rms 1.37 1.38 1.45 1.83 1.69 2.11 12.93

Max 16.90 16.60 16.30 17.70 15.90 16.40 15.20

Min −12.40 −11.80 −13.10 −12.30 −12.20 −10.40 −45.70
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The method makes consistent use of both high-resolution
topographic elevation data and existing gravimetric data to
simulate the field for geoid accuracy analyses. The topo-
graphic data, usually available at very high resolution (e.g.,
from SRTM), are transformed to gravity anomalies on the
basis of Airy’s isostatic compensation model, further simpli-
fied using a Helmert condensation of masses to level surfaces.
Matching these high-resolution topography-implied anoma-
lies to existing gravimetric data in the region yields a high-
resolution gravity anomaly model that attempts to simulate a
densification of the existing network with actual gravimetric
data.

Using this method, we showed that certain areas in South
Korea, taken as an example, require further gravimetric map-
ping at high resolution in order to meet specific geoid accu-
racy requirements, such as 5 or 1 cm (rms). We also showed
that gravity data precision, per se, is not nearly as influential
(provided it is random); whereas, uncertainty in the global
model used in the remove/restore process can be significant.
Also, the spatial analysis of the quasi-simulated geoid undu-
lation errors can lead to identification of obvious inconsisten-
cies in the existing data, as demonstrated for one particularly
large error.

Finally, it is noted that in areas where the linear corre-
lation between elevation and gravity anomaly breaks down
(e.g., in tectonic subduction and rift zones), other modeling
will likely be required to assess data requirements for geoid
undulation accuracy.
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