The EvolVe mission concept - unveiling the evolution of Venus
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Introduction Context Observations
Venus and Earth are similar in size, mass, and Plate tectonics is ever-present and determines the 1. One way to retrieve information on tectonic structures .. _ T SNR at Evolve orbitheight (250 km) :
. 5 5 . . . . . . . . . . N e— Kaula model (Venus) ]
distance .from the Sun; both are Iocajced within face of our planet, creating new crust at mid-ocean and crustal thickness is by investigating the gravitational field | e e e asey |
the habitable zone. However, their surface ridges and destroying it at converging margins. generated by the upper mantle and the lithosphere, | e e e —;
temperature,  pressure and chemlcal Tectonism on Venus shows differences that are not including correction with the topography. Venus topography | :
composition reveal they are to very different fully understood, such as features suggesting shows rift-like features of 1000s of km length and 10-100 km ,
worlds. As a result, our sister planet Venus, obduction zones. On a global scale, the surface width along great circles, (Fig 1) [7] with similarities to
unllke. Earth, cannot SUDD.Of.t |lf§ on ijS surface. presents a half billion year record of volcanic activity, Earth's mid-ocean ridges. Currently the gravity field is known ]
The aim of the EvolVe mission is to investigate but notably, based on impact crater distribution, it with a spatial resolution of 700 km [8], insufficient to |
V\{hy and hOVY Ea.rth and Venus evolv.ed = appears uniform in age [1]. This has led to theories of analyse such effects. Our simulations show that using a . ]
differently. This will help us to constrain the catastrophic global «=as GOCE-type gravity gradiometer at an orbital height of 250 asoree
conditions necessary for the emergence of life resurfacing [2], and i km, a spatial resolution of 85 km can be reached (Fig. 3) Fig. 3 At an orbital height of 250 km, SNR reaches 1 near
. . ’ ’ ) spherical degree and order 220, corresponding to a spherical
on our planet as well as on others, including change to a stagnant ey Sy
exoplanets. The importance of this scientific lid state [3], while | Magellan  Evolve
topic is reflected in its inclusion in ESA's Cosmic others suggest a Gravity measurements To obtain topographic evidence of tectonics and other
Vision 2015-2025 programme, as well as in Salle ek LA SpeiEl reselitons |00~ A00I (011 geophysical processes, terrain models are to be improved using
NASA's Vision and Voyages 2013-2022 report. regime [4]. o B e Highresolution  (SARstereo)  (sARstereo/ 2 synthetic aperture radar (SAR). For selected areas (10% of
oo | N topography INSAR) the surface), high resolution (40 m spatial, 4 m vertical) stereo
_ Fig. 1 Tectonic features on Venus © 2015 Richard Ghail. Coverage: 7 10% topography shall be obtained (using InSAR, Scanning targeted
6050 km radius 6400 km radius e\Volcanic activity on Venus is suggested o Jun2d 2008 Spatial resolution: 1-2 km 40 m TBC areas twice), see Fig. 4.
5.25 g/cc density 5.53 g/cc density by surface geochemistry from Venera |g vetticalprecision: |20 s4m Lithospheric thickness can also be estimated by aerial EM
100 bars of CO2 100 bars of CO2 equivalent landers [5], Ia.ndform.s resemblln.g Régj;';“gaj'”g —— SOl:Inding, which shall be achieved by a balloon at 50-60 km
Surface consistent with Basaltic volcanism volcanoes and variations in atmospheric — regoluﬁon. — — altitude, using naturally occurring EM resonances and
basaltic volcanism SO, gabundance. Recently, heat pulses | P ' perturbations. These can penetrate the crust to 50-100 km
Large iron-rich core inferred Large iron-rich core from the surface .detected by Vel'?US S — Fig. 4 A comparison of Magellan and Evolve depth on a dry Venus [9]
0.73 AU 1 AU Express have been ||.1terpreted as A SIgN . en by VEx
Thick atmosphere no water(2) | Thin atmosphere, water ocean of magma release (Fig 2) [6]. VMC, see [6]. The degasii)ng géate of. Venus heTs i!npl.ication t.o its over.all tectonic a.nd therma.l evolutior;. Pr4evio.usly
462 °C 14°C o . o o measured “Ar/*"Ar ratio can be indicative of this, but an independent isotope ratio such as "He/"He is to
Stasnant lid / revioust Slate fectonice elnitial bulk chemlcal. composition has a significant be measured to better constrain models, calling gas chromatograph mass spectrometer, mounted on a
obile? " ! effect on the geophysical properties of a planet, such balloon that is inserted in the planet's atmosphere.
: as its internal structure, thermal and tectonic
243 day rotation 24 hour day evolution. If Venus and Earth started with different e2. We plan to monitor long-term SO, abundance variations using a UV spectrometer. Secondly, we
No intrinsic magnetic field Internal dynamo bulk composition, it would mean that they were intend to identify hotspots with an IR spectrometer. Based on those measurements, we will select target
progressing along different evolutionary paths from areas of probable ongoing activity. Changes in morphology and elevation will be detected with InSAR
Scientific objectives the very beginning. It would also tell us about (spatial and vertical resolution <100 m and <1 c¢m, respectively). This requires repeated passes over at
To understand the reasons of Venus being so accretion history in the early Solar System. While least one Venerean day, which is met by the designed circular polar orbit and extended mission timeline.
different, we address the following scientific rTmodeIs SUEgEst Ml 5 Mt Ue EE5e; W cemt [Teve e3. Measuring the currently poorly known size of the core of Venus could constrain its composition. We
qguestions: firm knowledge yet.

plan to do so by estimating low-degree gravity field coefficients by Doppler tracking [8]. Additionally, an
EM sounding method based on magnetic field observations from the balloon will be used to determine
core size, in a manner used before for the Moon [10]. Finally, to compare the source of water on Venus
and Earth during their formation, isotopic ratios of noble gases (as a proxy to other volatiles [11] will be
measured, such as ?Ne/*’Ne and *’Ne/*Ne.

1. What is the tectonic history of Venus?
e2. What is the current volcanic activity of Venus?
e3. Was the initial bulk chemical composition of SRS
Venus and Earth different? Surface, by Venera 13. ©  2003,2004 Don P. Mitchell
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Fig. 5 Payloads on the mission's orbiter and balloon; goal refer to the corresponding scientific objectives.
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o , : , : : : : Power | with Data with SPACECRAFT (Platform ~xKg + propellant ~ 2100 Kg) 350
T.he mission consists of e.an orblter. anc! a balloon: Th.e balloc.)n,.travellmg passively Wlth the winds, will (W) margin | rate margin ENTRY PROBE (Including balloon, ~290 Kg) 300
circle the planet 2-3 times during its short lifetime (mission phase 1). The orbiter conducts a (kbps) SCIENCE OPERATIONS 40
gravimetry campaign (phase 2), and a SAR/INSAR campaign (phases 3ab/c). The main drivers of the 163 555 143 151 GROUND OPERATIONS 60
orbiter system and mission design were the conflicting requirements of the gradiometric PROJECT MANAGEMENT /0
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output and downlink to Earth is made via a 2 m steerable X-band parabolic main antenna. A further 1660 W (a SVStEmS active) ( gas balloon
. . . . Antenna size on orbiter: 2.0 m, (to
challenge is thermal control (because of strong direct solar irradiance and also reflected from Venus), 35 m receiver on Earth) gas lgenefated at Summary
. - - - . 5 - eplovyment
which is maintained by insulation and a radiator on 1 permanently cold face. Power: 230 W Apgro)‘('. S We identified a set of fundamental questions
Frequency: 8.5 GHz, X-band 292 kg (on spacecraft) regarding the history of Venus, the observations
Risk Assessment ';";"z"élml\‘/’l? possible Data Rate E/N : Power: necessary to answer these, and through a gradual
: S . .. )
g process, designed a space mission for this task.
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