The EvolVe mission concept – unveiling the evolution of Venus

D. Koronczay^{1,2}, R. Bailey³, S. Bertone^{4,5}, S. Credendino⁶, A. M. Kleinschneider⁷, M. Lanzky⁸, A. Łosiak⁹, C. Marcenat¹⁰, P. Martin¹¹, I. Muñoz Elorza¹², T. Neidhart¹³, M. Rexer¹⁴, H. Wirnsberger¹⁵

¹Geodetic and Geophysical Institute, RCAES HAS, Sopron, Hungary, ²Eötvös University, Budapest, Hungary, ³Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria, ⁴SYRTE, Observatoire de Paris, Paris, France, ⁵Astronomical Institute, University of Bern, Bern, Switzerland, ⁶Agenzia Spaziale Italiana, ⁷Delft University of Technology, Delft, Netherlands, 8Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark, 9Institute of Geological Sciences, Polish Academy of Science, Wroclaw, Poland, ¹⁰Institut Supérieur del'Aéronautique et de l'Espace, Toulouse, France, ¹¹Armagh, Northern Ireland, UK, ¹²HE Space Operations GmbH, Bremen, Germany, ¹³University of Vienna, Vienna, Austria, ¹⁴Institute for Astronomical and Physical Geodesy, Technical University of Munich, Munich, Germany, ¹⁵Space Research Institute, Austrian Academy of Sciences, Graz, Austria [contact: david.koronczay@ttk.elte.hu]

Introduction

Venus and Earth are similar in size, mass, and distance from the Sun; both are located within the habitable zone. However, their surface pressure and chemical temperature, composition reveal they are to very different worlds. As a result, our sister planet Venus, unlike Earth, cannot support life on its surface. The aim of the EvolVe mission is to investigate why and how Earth and Venus evolved so differently. This will help us to constrain the conditions necessary for the emergence of life on our planet as well as on others, including exoplanets. The importance of this scientific topic is reflected in its inclusion in ESA's Cosmic Vision 2015-2025 programme, as well as in

Context

•*Plate tectonics* is ever-present and determines the face of our planet, creating new crust at mid-ocean ridges and destroying it at converging margins. Tectonism on Venus shows differences that are not fully understood, such as features suggesting obduction zones. On a global scale, the surface presents a half billion year record of volcanic activity, but notably, based on impact crater distribution, it appears uniform in age [1]. This has led to theories of catastrophic global Great Circle Rift Arcs

resurfacing [2], and change to a stagnant lid state [3], while others suggest a Stable tectonic

Observations

•1. One way to retrieve information on tectonic structures and crustal thickness is by investigating the gravitational field generated by the upper mantle and the lithosphere, including correction with the topography. Venus topography shows rift-like features of 1000s of km length and 10-100 km $\frac{1}{2}$ 10^{2} width along great circles, (Fig 1) [7] with similarities to Earth's mid-ocean ridges. Currently the gravity field is known with a spatial resolution of 700 km [8], insufficient to analyse such effects. Our simulations show that using a GOCE-type gravity gradiometer at an orbital height of 250 km, a spatial resolution of 85 km can be reached (Fig. 3)

EvolVe Magellan Gravity measurements Spatial resolution: 300 - 700 km 80 km

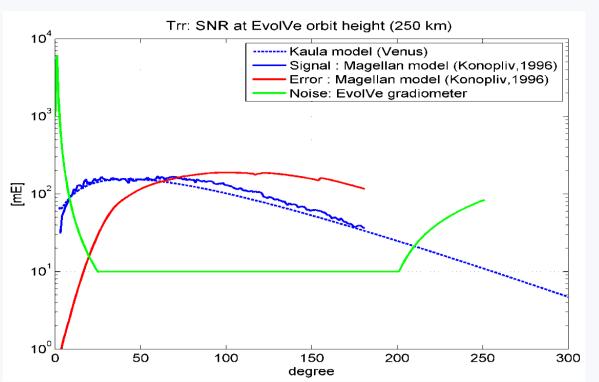


Fig. 3 At an orbital height of 250 km, SNR reaches 1 near spherical degree and order 220, corresponding to a spherical scale of 85 km.

To obtain topographic evidence of tectonics and other geophysical processes, terrain models are to be improved using a synthetic aperture radar (SAR). For selected areas (10% of the surface), high resolution (40 m spatial, 4 m vertical) stereo topography shall be obtained (using InSAR, scanning targeted areas twice), see Fig. 4.

NASA's Vis	sion and Voyages	<i>s 2013-2022</i> report.
------------	------------------	----------------------------

Venus	Earth
6050 km radius	6400 km radius
5.25 g/cc density	5.53 g/cc density
100 bars of CO2	100 bars of CO2 equivalent
Surface consistent with basaltic volcanism	Basaltic volcanism
Large iron-rich core inferred	Large iron-rich core
0.73 AU	1 AU
Thick atmosphere no water(?)	Thin atmosphere, water ocean
462 °C	14 °C
Stagnant lid / previously mobile?	Plate tectonics
243 day rotation	24 hour day
No intrinsic magnetic field	Internal dynamo

Scientific objectives

To understand the reasons of Venus being so different, we address the following scientific questions:

•1. What is the tectonic history of Venus? •2. What is the current volcanic activity of Venus? •3. Was the initial bulk chemical composition of Venus and Earth different?

Fig. 1 Tectonic features on Venus © 2015 Richard Ghail.

Jun 24 2008

•Volcanic activity on Venus is suggested by surface geochemistry from Venera landers [5], landforms resembling volcanoes and variations in atmospheric SO₂ qabundance. Recently, heat pulses from the surface detected by Venus Fig 2 Image Express have been interpreted as a sign taken by VEx of magma release (Fig 2) [6]. VMC, see [6].

•Initial bulk chemical composition has a significant effect on the geophysical properties of a planet, such as its internal structure, thermal and tectonic evolution. If Venus and Earth started with different bulk composition, it would mean that they were progressing along different evolutionary paths from the very beginning. It would also tell us about accretion history in the early Solar System. While models suggest this is not the case, we don't have firm knowledge yet.

Surface, by Venera 13. © 2003,2004 Don P. Mitchell

High resolution topography	(SAR stereo)	(SAR stereo / InSAR)
Coverage:	20%	10%
Spatial resolution:	1-2 km	40 m TBC
Vertical precision:	50 m	<4 m
Radar imaging		
Coverage:	global (96%)	20 %
Spatial resolution:	100 m	10 m TBC

Fig. 4 A comparison of Magellan and Evolve

Lithospheric thickness can also be estimated by aerial EM sounding, which shall be achieved by a balloon at 50-60 km altitude, using naturally occurring EM resonances and perturbations. These can penetrate the crust to 50-100 km depth on a dry Venus [9].

The degassing rate of Venus has implication to its overall tectonic and thermal evolution. Previously measured 40 Ar/ 36 Ar ratio can be indicative of this, but an independent isotope ratio such as 3 He/ 4 He is to be measured to better constrain models, calling gas chromatograph mass spectrometer, mounted on a balloon that is inserted in the planet's atmosphere.

•2. We plan to monitor long-term SO_2 abundance variations using a UV spectrometer. Secondly, we intend to identify hotspots with an IR spectrometer. Based on those measurements, we will select target areas of probable ongoing activity. Changes in morphology and elevation will be detected with InSAR (spatial and vertical resolution <100 m and <1 cm, respectively). This requires repeated passes over at least one Venerean day, which is met by the designed circular polar orbit and extended mission timeline.

•3. Measuring the currently poorly known size of the core of Venus could constrain its composition. We plan to do so by estimating low-degree gravity field coefficients by Doppler tracking [8]. Additionally, an EM sounding method based on magnetic field observations from the balloon will be used to determine core size, in a manner used before for the Moon [10]. Finally, to compare the source of water on Venus and Earth during their formation, isotopic ratios of noble gases (as a proxy to other volatiles [11] will be measured, such as $^{22}Ne/^{20}Ne$ and $^{21}Ne/^{20}Ne$.

Hohmann transfer	Aerobraking Balloon	Geodesy	Stereo topography	Delta topography		Instrument	Measurements	Goal	Ranges	Mass Power Data rate
	ops					Gradiometer	Gravity gradient	1	Band with: 5MHz-0.1 Hz Noise: 3mEHz ^{-1/2}	137 kg 65 W 1.7 kbps
		gradiometer		>	<u>ш</u>	Radar Altimeter	r Altitude	1,2	Sample Frequency: 50 Hz <u>Altitude Accuracy:</u> 1 m	6 kg 1 W 1 kbps
5 months	1 19 month days	altimeter > 8 months (1 Venus day)	InSAR 16 months (2 Venus days)	8 months (1 Venus day)	SATELLITI	InSAR	Topography, Delta Topography	1,2	S Band (λ= 12 cm) 10% of surface coverage Look Angle_35-45° SW=40-70 Km Spatial Resolution <40m Vertical accuracy ≈cm	120 kg 800 W 5.3 GB/day
	Arriving Balloon at Venus release			End of mission		Sportromotor	Detection of SO ₂ , detectspots with high thermal fluo on the surface	1	Spectral Range (μm) 0.11-0.31 and 0.7-5 Spectral Resolution ≈1nm; Spectral Resolving power: λ/Δλ≈ 100-200 Spatial resolution: 50 Km	U 0
				Mont Lenguer te nu JPUT 2001 - 200 Tm Tm Tm Tm	NOO	Mass	Noble gases ratio in the atmosphere for the accretion questions, bulk chemical composition	2,3	<u>Resolution:</u> 0.1 AMU <u>Range</u> : 2-150 AMU <u>Sensitivity:</u> 0.1 ppb <u>Accuracy</u> ± 1%	18 kg 43 W 1 kbps
g. 6. Orbital simulations of the Launch window:	the EvolVe transfer/aerobraking Phase 1	phases Phase 2	Phase 3ab	Phase 3c		MT sounding	Thickness of crust, lithosphere, thermal gradient for tectonics questions, ground water content	1,3	Frequency: 100 Hz	3.1 kg 2.7 W 5 kbps
(optimistic) 07/12/202 (alternative) 07/12/20	24 Balloon riding		High power and comm. bandwidth → solar panels and main dish pointed	Surface changes detected Aids IR/UV targeting			Magnetic field measurement for the bulk composition	1,3	Sample Frequency: 20 Hz	3.1 kg 3.6 W 1.2 kbps

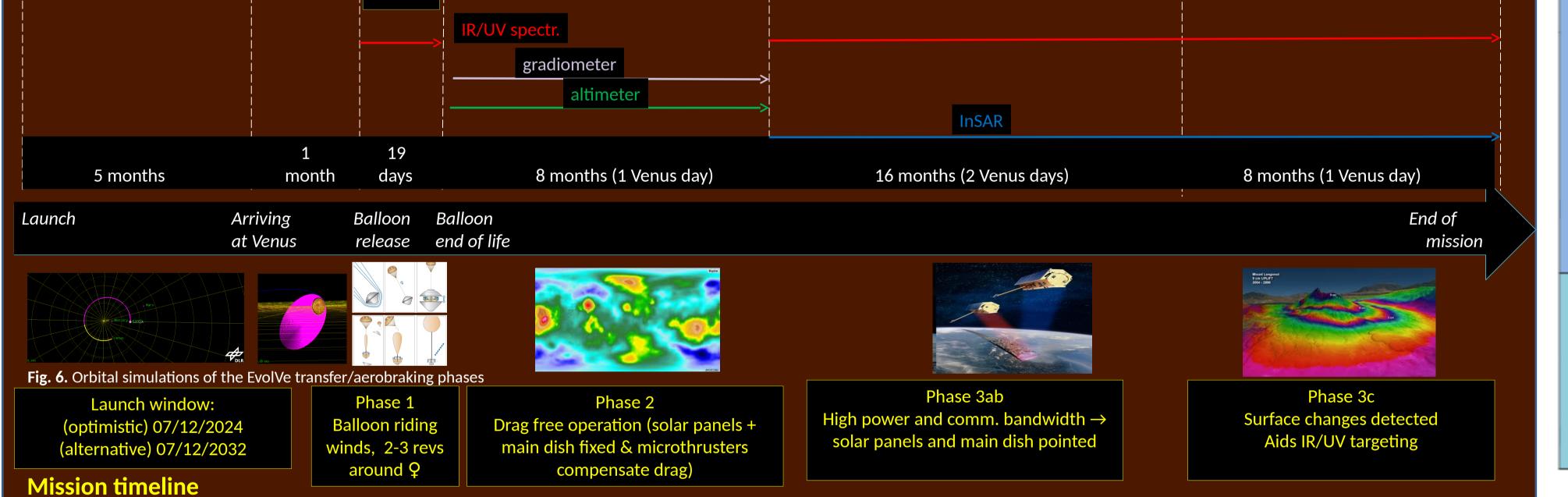


Fig. 5 Payloads on the mission's orbiter and balloon; goal refer to the corresponding scientific objectives.

System overview

The mission consists of an orbiter and a balloon. The balloon, travelling passively with the winds, will circle the planet 2-3 times during its short lifetime (mission phase 1). The orbiter conducts a gravimetry campaign (phase 2), and a SAR/InSAR campaign (phases 3ab/c). The main drivers of the orbiter system and mission design were the conflicting requirements of the gradiometric measurement (needing a drag-free environment) and the SAR (drawing high power and producing high data rates). During *phase 2* steerable elements (solar panels and main dish) are fixed, in order to reduce drag and vibrations and the remaining drag is compensated by an electric microthruster taken from LISA. During phases 3ab and 3c, solar arrays are pointed owards the Sun to increase power output and downlink to Earth is made via a 2 m steerable X-band parabolic main antenna. A further challenge is thermal control (because of strong direct solar irradiance and also reflected from Venus), which is maintained by insulation and a radiator on 1 permanently cold face.

Mass, power, communications

	Power (W)	with margin
	463	555
Orbiter	463	555
Dry mass: 1099 kg	1211	1423

Propellant mass: 2042 kg Orbit Injection: 1811 kg

Maintenance: 231 kg 1660 W (all systems active) Antenna size on orbiter: 2.0 m, (to 35 m receiver on Earth) Power: 230 W

Power (W)	with margin	Data rate (kbps)	With margin
463	555	143	151
463	555	36	37
1211	1423	341	358

Fig. 7 Orbiter power budget and data rates

Balloon Superpressure light gas balloon Gas generated at deployment Approx. 7 m diameter

ELEMENTS	[M€]
LAUNCHER (Ariane 5)	175
SPACECRAFT (Platform ~xKg + propellant ~ 2100 Kg)	350
ENTRY PROBE (Including balloon, ~290 Kg)	300
SCIENCE OPERATIONS	40
GROUND OPERATIONS	60
PROJECT MANAGEMENT	70
INDUSTRIAL MARGIN (10%)	65
PROGRAM MARGIN (15%)	200
PROGRAM COST TO ESA	1260
PAYLOAD (~500 Kg)	500
Fig. 8 Cost analysisTOTAL COST (including margin)	1760

Summary

We identified a set of fundamental questions

Risk Assessment

Risk assessment shows that even though we used the most pessimistic atmospheric model, its uncertainties (cf. VIRA and Seiff) remain the largest risk factor to achieving the primary science objective. This can be mitigated by large margins on the propulsion system and by further investigation of atmospheric models (e.g. incorporation of latest VexADE and other results). Probability

Severity	1	2	3	4	5
5	В, М	Ν	Α		
4		E, I	G	н	
3	K	С	F	L	
2	J	D		0	
1					

		Proba bility	ID
5	Drag in orbit too high for measurements	3	А
5	LV failure	1	В
3	LV injection error	2	С
2	Solar Panel damage	2	D
4	Trajectory failure	2	E
3	HGA pointing error	3	F
4	Loss of Balloon (Reentry, Venus environment)	3	G
4	Insufficient Orbit Determination	4	Н
4	Balloon Deployment Failure	2	1
1	Ariane V decommissioned	2	J
3	Solar Array pointing error	1	К
3	Solar Particle Event	4	L
5	Failure to deploy appendices	1	М
5	Pointing accuracy insufficient for gradiometer	2	Ν
2	Reduced data transmission rate	4	0

292 kg (on spacecraft) Power: 61 W

regarding the history of Venus, the observations necessary to answer these, and through a gradual process, designed a space mission for this task.

References

Orbiter

[1] McKinnon, W., Zahnle, K., Ivanov, Ivanov, B., Melosh H.: Cratering on Venus: Models and observations, in Venus II, pp 969-1014, Univ. of Ariz. Press, 1997. [2] Turcotte, D. L.: An episodic hypothesis for Venusian tectonics. Journal of Geophysical Research, Vol. 98, p. 17061-17068, 1993. [3] Solomatov, V. S., Moresi, L.-N.: Stagnant lid convection on Venus. Journal of Geophysical Research, Vol. 101, p. 4737-4754, 1996. [4] Ghail, R.: Rheological and petrological implications for a stagnant lid regime on Venus. Planetary and Space Science, (in press) 2015. [5] Surkov Yu. A. et al.: New data on the composition, structure, and properties of Venus rock obtained by Venera 13 and Venera 14. Journal of Geophysical Research, Vol. 89, Suppl., p. B393 – B402, 1984. [6] Shalygin, E. V. et al.: Bright Transient Spots in Ganiki Chasma, Venus. 45th LPSC, 2014. [7] Jurdy, D. M., Stefanick, M.: Correlation of Venus Surface Features and Geoid, Icarus, Vol. 139, pp. 93-99, 1999. [8] Konopliv, A. S. et al.: Venus Gravity: 180th Degree and Order Model. Icarus, Vol. 139, pp. 3-18, 1999. [9] Grimm, R. E. et al.: Aerial electromagnetic sounding of the lithosphere of Venus. Icarus, Vol 217, pp. 462-473, 2012. [10] Shimizu, H. et al.: Constraint on the lunar core size from electromagnetic sounding based on magnetic field observations by an orbiting satellite. Icarus, Vol. 222, p. 32-43, 2013.

[11] Mukhopadhyay, S.: Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature, Vol. 486, pp. 101-104, 2012.

Acknowledgements

We thank our tutors Alejandro Cardesín Moinelo and Oliver Baur; Richard Ghail for his insights and patience; and all lecturers and the staff that made the Alpbach Summer School possible. The author gratefully acknowledges support from Europlanet, the Research Centre for Astronomy and Earth Sciences - Hungarian Academy of Sciences and the Association of Hungarian Geophysicists.

Summer School Alpbach 2014 Space Missions for Geophysics of the Terrestrial Planets July 15-24, Alpbach/Tyrol - Austria